04 березня 2024

Узагальнені закони Кеплера



Закони Кеплера





Закони Кеплера: швидкість; прискорення

   

Відомо, довільні два масивні тіла притягуються один до одного. Це фізичне явище називається гравітацією (від лат. Gravis – важкий).

Прояв гравітації: водопади; важкість портфеля з підручниками; падіння (і як наслідок – руйнування) улюбленого горняти…

Наскільки великими є сили гравітаційного притягання (гравітаційне відштовхування не спостерігається)? 
Два учні, масами по 50 кг, котрі розмовляють між собою, взаємодіють із силою 1,6·10-7 Н ( 1Н дорівнює вазі тіла масою наближено 102 г). 
Ця сила є дуже малою. Проте Земля (Мз = 6·1024кг) притягує Місяць (Мм = 7·1022кг) з силою 1020Н, а Сонце (Мс = 1,99·1030кг) притягує Землю з силою 1022Н! 
Cаме ці колосальні сили визначають рух планет в Сонячній системі, рух цілих Галактик… Гравітаційні сили є визначальними в розвитку Всесвіту та його майбутнього.
Сила, з якою взаємодіють довільні два масивні тіла, визначається законом Всесвітнього тяжіння (встановленим Ньютоном у 1687році):



де m1,m2 – маси взаємодіючих тіл; 
R – відстань між їх центрами; 
G = 6.67 ·10-11 H·м2/кг2 – гравітаційна постійна (вперше визначена у 1793 році Генрі Кавендішом).   

Зауваження: закон Всесвітнього тяжіння справедливий лише для точкових тіл, тіл сферичної або кулястої форми з незмінною густиною.

Закони Кеплера


Узагальнюючи результати вікових астрономічних спостережень, Кеплер встановив закони, за якими рухаються планети у Сонячній системі.

Перший закон Кеплера.
Усі планети рухаються по еліптичних орбітах, в одному із фокусів яких знаходиться Сонце.

Другий закон Кеплера.
За рівні проміжки часу радіус-вектор планети описує рівні площі:
S = L·∆t/2m




Цей закон безпосередньо випливає із закону збереження моменту кількості руху.

Третій закон Кеплера.
Квадрати періодів обертання різних планет навколо Сонця відносяться як куби великих півосей їхніх еліпсів:
T2/a3 = const


Нехай планета масою m рухається по коловій орбіті навколо зорі М. З другого закону Ньютона знаходимо:

(mω2R = GmM/R2 (4π2R/T2 = GM/R2→ 
(T2/R3 = 4π2/GM = const)


Закони Кеплера застосовні не лише для руху планет, але і для руху їх природніх і штучних супутників.

Ньютон виявив деяку неточність у законах Кеплера і дещо узагальнив їх.



Узагальнений Ньютоном перший закон Кеплера:
Під дією сили тяжіння одне небесне тіло може рухатися навколо іншого по одній з наступних кривих: коло, еліпс, парабола, гіпербола.
Даний закон має універсальний характер і є справедливим не лише для планет, але і для всіх інших природніх і штучних небесних тіл.
Якщо розглянути систему Сонце – Земля, то, внаслідок взаємодії, і Сонце і Земля рухатимуться навколо спільного центру мас. Враховуючи відстань від Землі до Сонця (15·107 км), та відношення їх мас (1: 3,3·105), можемо знайти відстань від центра Сонця до спільного центра мас, котра дорівнює 450 км (тобто спільний центр мас Землі і Сонця практично суміщається з центром Сонця).


(Mc(r – xз) = mзxз (xз = Mcr/(Mc + mз) )

З другого закону Ньютона:
4π2mзxз/T2 = GMcmз/r2
Підставивши в останнє рівняння хз отримаємо:
4π2Мсr/T2(Mc + mз) = GMc/r2
Тому:
 (Mc + mз) T2/r3 = 4π2/G = const

Останнє співвідношення називають: 
узагальнений Ньютоном третій закон Кеплера.


Зацініть зміну швидкості...

Відомий Кеплер