11 жовтня 2024

Додавання коливань (закріплюємо вивчене)

 

 Додавання взаємно перпендикулярних коливань

Фігури Ліссажу


Фігури Ліссажу. Відношення a/b - відношення власних частот незатухаючих коливань

Розглянемо коливальну систему, яка складається з точкової маси m та зв’язаних з нею чотирьох пружин (мал. 1 вид зверху).  Така система володіє двома ступенями вільності. 

Мал. 1


При невеликих зміщеннях коливання відбуватимуться у двох взаємно перпендикулярних напрямках незалежно одне від одного:


із власними частотами гармонічних коливань



Знайдемо траєкторію руху коливальної частинки у випадку, коли частоти рівні між собою:
ω01 = ω02 = ω0

жорсткості всіх пружин однакові. Виключаючи із рівнянь коливань час та здійснюючи певні тригонометричні перетворення отримуємо наступне рівняння:


   
Проаналізувавши його, робимо висновок, що траєкторією руху вантажу є еліпс.



Мал. 2.1

Таким чином, в загальному випадку, вантаж здійснюватиме періодичні коливні рухи по еліптичній траєкторії. Напрям руху вздовж траєкторії та орієнтація еліпса відносно осей залежить від початкової різниці фаз Δφ = φ2 – φ1 (мал. 2.1, 2.2).


Мал. 2.2


Якщо частоти двох взаємно перпендикулярних коливань не співпадають, проте є кратними між собою mω02 = nω01, то траєкторіями руху вантажу будуть замкнені криві – фігури Ліссажу (мал. 3). 


Мал. 3

У випадку, коли кратність відсутня, то траєкторії не будуть замкненими, і поступово заповнюватимуть весь доступний простір (мал. 3).



Мал. 4  Фігури Ліссажу залежать від відношення частот (a/b) та початкової різниці фаз Δφ.